ThorCon Molten Salt Reactor (TMSR-500) Technology for Indonesia

Dane Wilson, ThorCon Intl
October 01, 2019
Thorium Energy Alliance TEAC10
Pollard Technology Conference Center
Oak Ridge, Tennessee

Two 500 MW ThorCon liquid fission power plants
Prototype Built In A Hull, Pretested, Towed To Indonesia, Settled Shoreside, And Powered Up. A 174x67m Complete 500 MWe Power Plant
Each 557 MWt Power Module Has An Active And A Cooldown Can
ThorCon Employs Three Salt Loops

47.7% thermal efficiency @ 20°C

46.4% thermal efficiency @ 30°C
Replaceable Can Unit Housed Within Cold Wall

- Reactor Pot contains the graphite moderator with channels for molten salt flow
- Freeze valve melt drains salt to drain tank
- Cold wall absorbs heat radiated from drain tank
- Cold wall is cooled by natural water circulation
Cold Wall Is Cooled By Natural Convection To Condenser In Cooling Pond
Next Step Is A Pre-fission Test Plant
ThorCon Recent Actions Include:

- System simulations show Fukushima like accidents do no harm
- Design and simulations by top Korean ship safety firm show ThorConIsle can handle a North Atlantic storm and aircraft engine strike. Seismic analysis started.
- GAIN project (ANL): Salt properties measurement begun
- GAIN project (ANL): Electro-chemical sensors for in-situ redox, salt level, and plutonium concentration is underway
- Indonesian P3Tek study to validate ThorCon claims for safety, cost, and supply chain completed
 - Recommendation to be sent to the Indonesian president
Thorcon Fukushima Response:

- Earthquake sensors
 - initiate fuelsalt drain
 - drop shutdown rods (SCRAM)
 - fission stops
- Then, all power and primary cooling path lost
- Reactor in safe state with fuelsalt in passively cooled drain tank.
- Fuelsalt temperature max 750°C
- Worse - instant SBO max 850°C
- Worst - SBO+triple shutdown rod fail 1000°C w/ 0.5% creep damage
ThorCon Hull Towed Through North Atlantic Storm Seas Accepts 1 g Forces

Draught at Tow Condition

<table>
<thead>
<tr>
<th>Length</th>
<th>Width</th>
<th>Depth</th>
<th>Draught</th>
<th>Hull Weight</th>
<th>Total Equipment Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>174 m</td>
<td>65 m</td>
<td>33 m</td>
<td>13.3 m (Stern)</td>
<td>12.1 m (midship)</td>
<td>11.0 m (Bow)</td>
</tr>
</tbody>
</table>

Material Properties (Nominal Values)

<table>
<thead>
<tr>
<th>Material</th>
<th>Yield Strength</th>
<th>Elastic Modulus</th>
<th>Poisson’s Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild Steel</td>
<td>235 MPa</td>
<td>205.8 GPa</td>
<td>0.3</td>
</tr>
<tr>
<td>AH36</td>
<td>355 MPa</td>
<td>205.8 GPa</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Scenario: 8 t Aircraft Engine Strikes Sand-filled Sandwich Wall At 200 m/s

- Max penetration 200 mm
- Max inner wall deflection 300 mm
- No effect on
 - Silo (which surrounds)
 - Cold wall (which is around)
 - Can (which contains)
 - Primary loop containing radioactive fuelsalt

Initial impact speed:
\[V_0 = 200 \text{ m/s} \]
In Summary, ThorCon Is Moving On The Winding Path Forward

http://thorconpower.com/