
The Promex Heat Exchanger

Design Toolkit

Version 0.15

Jack Devanney

Sisyphus Beach

Tavernier, Florida

2015-07-01

2015-07-01
This is an incomplete draft for discussion.

Please send any comments to djw1@c4tx.org.

Copyright c© 2012, 2013, 2014, 2015 Center for Tankship Excellence

Permission is granted to copy, distribute this document under the terms of
the Gnu Free Documentation License (GFDL), Version 1.2 or any later ver-
sion published by the Free Software Foundation; with no Invarient Sections,
no Front-Cover Texts, and no Back-Cover Texts. A copy of the GFDL is
available at www.gnu.org.

2

www.gnu.org

Contents

1 Introduction 2

2 Logic 4

3 Limitations 6

4 Installing Promex 8

5 Promex Structure and Philosphy 10

6 Data Input Files 13

6.1 Introduction . 13
6.2 Cylindrical Heat Exchangers 13
6.3 U-tube Heat exchangers . 15
6.4 Segment-of-Ring Heat Exchangers 16

7 Running Promex 20

8 Output 22

9 Hacking Promex 26

10 The Materials Folder, MAT 27

11 The Steam Folder, STEAM 29

12 The Heat Transfer Folders, SHELL HT and TUBES HT 30

13 The Pressure Drop Folders, SHELL PD and TUBES PD 32

14 The STRESS Folder 33

15 The COMMON Folder 34

16 The IN OUT Folder 36

17 The Design Folders 38

1

1 Introduction

Promex is a shell and tube heat exchanger (HX) design toolkit. Promex’s
focus is on HX’s employing molten salts as the heat transfer fluids. It was
inspired by the ORNL program Primex and uses the core Primex logic.1

However, while Primex is a fiendishly clever program, the coding violates
every rule of modern programming. Primex is written in 1960’s style For-
tran, with short, always cryptic and often meaningless variable names. Ex-
cept for the tube stress analysis, there are no subroutines, just a single 500
line main program, with almost no comments. All variables are global. The
loops are implemented with intertwining GOTO’s. One result is that Primex
had some serious bugs which apparently went unnoticed until this rewrite.2

Finally, the whole thing is in cursed English units.
Our goal was to totally restructure the code to make it far more flexible,

and far more easily maintained. We also took advantage of this re-write to
convert the program to strict SI units.

However, the result is a toolkit, not a single program. To make proper use
of Promex, the user must be prepared to do some scripting. The goal is to be
engineer friendly, where an engineer is presumed to have some programming
capability. Promex is written in Perl, and assumes some knowledge of Perl.
But anyone who has done any scripting in any language can quickly learn
the little Perl he needs.

Promex is released under the BSD License which reads

Copyright (c) 1912, Center for Tankship Excellence
All rights reserved.

Redistribution and use in source and binary forms, with or with-
out modification, are permitted provided that the following con-
ditions are met:

• Redistributions of source code must retain the above copy-
right notice, this list of conditions and the following dis-
claimer.

• Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following dis-
claimer in the documentation and/or other materials pro-
vided with the distribution.

1 Bettis, C. et al, Computer Programs for MSBR Heat Exchangers, ORNL-TM-2815,
June, 1971. Promex comes after Primex in the vowelphabet.

2 Devanney, J., Resurrecting Primex. http://www.c4tx.org/ctx/pub/primex bugs.pdf.

2

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLD-
ERS AND CONTRIBUTORS ”AS IS” AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIEDWARRANTIES OFMERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DI-
RECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

Caveat receptor. In particular, this is an early-alpha version which un-
doubtedly has serious bugs. It has been very lightly tested. It is being
released in the hope that people who have a need for an Open Source heat
exchanger program will correct and extend the package. Or to put it more
correctly, Promex is being released now so the real testing can begin.

To our knowledge, this version of Promex has only been tested on the
Linux distribution Ubuntu. CTX does not support proprietary operating
systems. But Promex should run on any platform that has a reasonably
up-to-date Perl interpreter.

Throught this manual we use the convention that text in fixed-width,
upright font such as promex.pl is to be entered verbatim. Material in fixed-
width italic such as filename is variable and under the control of the user.

3

2 Logic

At its core, Promex uses the same overall logic as Primex. This logic requires
that the user specify a required heat transfer rate (duty), and the hot end
and cold end temperatures on both the tubes-side and the the shell side.
This immediately determines the mass flow rates on both sides by a simple
energy balance. Unless the specified temperatures and required duty are
reasonably consistent, you will almost certainly get a “No feasible solution.
See logile promex logfile nnnnn ” message. Promex will transfer heat from
the tube side fluid to the shell side or vice versa depending on whether the
tube side hot end temperature is higher or lower than the shell side hot end.

Once all the heat exchanger parameters other than length are estab-
lished, Promex starts at the hot end of the HX and keeps adding length in-
crements until it reaches the user specified cold end temperatures or decides
that the combination is infeasible. Each length increment must be short
enough so that Promex/Primex assumption that the material properties at
the average temperature in the length increment can be used throughout
the increment is acceptably accurate. It is the user’s responsibility to look
at the results and decide if this is the case.3

Where the Promex logic completely differs from Primex is in the outer
loops. In a Primex run everything other that HX diameter baffle spacing
and HX length is fixed by the user. Primex searched over HX diameters
and baffle spacing looking for a feasible HX that had pressure drops that
were close to but not more than user set targets. Primex used a baroque
algorithm to try and do this.

Promex allows the user to search over the entire HX design space with as
many search loops as the user desires and his hardware will accommodate.
Promex requires that the user supply a cost model which can be as simple
as a linear function of HX weight and pressure drops. Promex finds the
minimum cost HX that meets the heat load and the user specified hot end
and cold end temperatures, according to that cost model.

Usually the goal of Promex’s optimization is not optimum in some ab-
solute sense, but reasonable, or, as the economists would say, efficient. For

3 A rule of thumb for molten salts is that as long as the temperature drop in an
increment is less than 10C, you are probably OK. Early in the design process, you may
want to bend this rule to enable a wide-ranging search over the design space. Later as
the design process focuses in on a particular sub-region in the design space, you should
probably go to smaller length increments to get a bit more accuracy, and more importantly
see if the choice of length increment significantly affects your results. Promex is designed
to this facilitate this kind of changing of the rules.

4

example, by varying the ratio of material cost to pump power cost in the
simple cost model outlined above, we can pull out the set of efficient HX’s,
those for which we can’t have a lower material cost without a higher pump
cost. This subset of sub-optimum alternatives then can be passed to a more
comprehensive plant design program which can figure out what a change in
HX diameter or length implies for the plant as a whole.

In some cases, minimizing a weighted combination of material and power
will result in a very long/tall heat exchanger which will have its own costs in
terms of plant arrangment. By adding a length penalty, a form of Lagrange
multiplier, Promex can be induced to come up with a shorter heat exchanger
if that is feasible.

Promex does allow the user to specify maximum allowable pressure drops
on either or both of the shellside and the tube side. This capability simply
throws out candidates who fail to meet the required pressure drop(s). We
recommend that this feature be used judiciously if at all. Usually you will
get a more intelligent design if you increase the ratio of pump power cost to
material cost until you get down to the pressure drop you think you need.

5

3 Limitations

This version of Promex has at least the following major limitations.

Only Countercurrent Heat Exchangers It is not clear — at least to
me — to what degree it is possible to extend the core Primex logic to
non-countercurrent heat exchangers.4

Single phase, incompressible, near-constant specific heat With one
exception, the current version only works on incompressible fluids in
which the specific heat does not change drastically over the HX tem-
perature range. Primex assumed the enthalpy change as the fluids
move through the heat exchanger is a function only of the inlet and
outlet temperature, not pressure.

There is one very important exception. A variant of Promex called
Tromex allows the tube side fluid to be steam. The steam may be
water, saturated, superheated or super-critical. Tromex implements a
nearly complete version of the IAPWS-IP97 steam tables. Tromex is
automatically installed with Promex Version 0.15 or higher. It is is
used in the same manner as Promex except as noted below. Tromex
is much more computer intensive than Promex.

Models only the middle section Most shell and tube heat exchangers
can be divided into three sections: a section at either end where the
fluid inlets and outlets are, and a big section in the middle. The current
version of Promex does not model the section at either end, implicitly
assuming that all the heat transfer and pressure drops take place in
the middle section. Nor does it model the specifics of the U-bend in
a U-tube heat exchanger. These restrictions are largely unnecessary.
Future versions will need to rectify this. The basic framework has
been set up to accommodate a special hot end section and to a lesser
degree a cold end section.

Only cylindrical and segment-of-a-ring geometries Currently Promex
implements only two geometries;

1. a cylindrical shell and tube bundle with or without a central
downcomer,

4 Practically, this is not as bad a restriction as it sounds. The delta T’s a molten salt
reactor has to work with are such that anything other than a nearly counter-current HX
is quite unlikely to be economically infeasible.

6

2. a segment of a ring. This geomentry is popular among reactor
designs which put a heat exchanger just above the core.

The cylindrical geometry can be used to model a U-tube, but in this
case either the heat transfer/pressure drop in the U must either be
ignored or the U assumed to transfer heat/momentum in the same
manner as the rest of the heat exchanger. This restriction is largely
unnecessary and other geometries are certainly possible.

No stress analysis. The current version does no thermal expansion nor
stress analysis. All material thicknesses must be provided by the user,
and there are no strength checks. This restriction in largely unneces-
sary. Hooks have been provided to allow this limitation to be relaxed
in the future.

Brute force search In all the sample problems in this version, the main
program does an exhaustive search over the design space. This can be
very computer intensive. If the user is willing to make some assump-
tions, then massive improvements in search efficiency are possible. If
the assumption is made that there is a single global optimum, then hill
climbing techniques can be used. Less restrictive assumptions such as
assuming that, as soon as the cost starts going the wrong way in the
innermost loop(s), there is no point searching further along this axis
can cut the design space drastically.

No GUI Promex has only a command line interface. CTX regards this as
more of a feature than a limitation. Inter alia, it allows Promex cal-
culations to be incorporated into larger overall system design studies.
The input and output is in XML to facilitate this. In any event, we
have no plans to give Promex a GUI.

7

4 Installing Promex

To install Promex on Linux or a Linux-like Unix platform,
1. Make a folder where you want to install Promex. You might want to

name this folder promex.
2. Point your browser at

www.c4tx.org/ctx/job/promex/. Select the version you want from the
index and download the file to this folder. The download file will be
a tar archive with a name like promex n.mm .tgz where n.mm is the
Promex version number.

3. Issue
tar xvzf promex n.mm .tar.gz

to expand the tarball. You will find the version you downloaded in a
sub-folder called n.mm . This setup allows you to keep multiple versions
of Promex around.

4. Set an environment variable called PROMEX PATH to the full path to this
folder including the n.mm . For example, if you expanded the tarball in
/usr/local/promex, PROMEX PATHmust be set to /usr/local/promex/n.mm .

5. Set an environment variable called PROMEX VERSION to the version
number of the Promex you have installed.

6. Make sure all the Promex sub-folders are executable by the relevent
user group(s) and writable by users whom you want to be able to edit
the code. Include the Promex Design folders (see next section) in your
users’ path.

7. If your Perl interpreter is not at /usr/bin/perl, make a symbolic link
from wherever it is to /usr/bin/perl.5

8. Go to the ornl4541 sub-folder in your Promex folder and issue promex.pl.
You should end up seeing something like Table 1. Be patient. There’s
quite a bit going on and the run could take 20 seconds or more de-
pending on your machine. You will also get some intermediate output.
including one line every time Promex finds a feasible candidate HX
that has a lower cost than the best so far.

9. If you have a problem on a Linux platform, send as email to djw1@c4tx.org
describing the situation. We may be able to help, but no promises.

5 If your site policy does not allow you to do this, then you will have to either
(a) edit the first line in each executable file changing /usr/bin/perl to the path to your

Perl interpreter, or
(b) prefix each command in this manual with “perl ”. That is, instead of issuing

“promex.pl”, you will have to issue “perl promex.pl”.

8

http://www.c4tx.org/ctx/job/promex/

If you are not on a Linux-like platform, then you will have to find a local
guru who knows how to modify these instructions for your platform.

9

5 Promex Structure and Philosphy

We can begin to understand the structure and philosophy of Promex by
looking at the directory tree. When you untar the download file, you will
find a number of folders in the directory where you have placed Promex.
These folders fall into two categories:

1. Common folders containing programming or libraries which are inde-
pendent of a specific HX geometry.

2. Design folders which are specific to a particular HX concept.
To help make this distinction clear, the Common folders have capitalized
names; the Design folders have lower case names.

The Common folders are

MANUAL Contains this manual.

MAT A library of material property functions.

SHELL PD A library of shell-side pressure drop routines.

SHELL HT A library of shell-side heat transfer routines.

TUBES PD A library of tube-side pressure drop routines.

TUBES HT A library of tube-side heat transfer routines.

WALL HT A library of tube wall heat transfer routines.

STEAM A nearly complete implementation of the IAWPS-IP97 steam ta-
bles. Region 5 (above 800C) is not implemented, In Region 3, sub-
regions 3a, 3b, 3c, 3d, 3e, 3f are implemented. The unimplemented
regions are rarely encountered in normal steam generator design; but,
if this happens, an error code is raised. This folder contains test/query
routines for all the basic steam properties. It can be used as a steam
table for any design program.

STRESS A library of tube stress routines.

IN OUT Input and output routines.

COMMON This important folder contains all the library and utility rou-
tines which do not fit into one of the above categories. In particular,
it contains the core Primex-based logic. the core Primex logic.

10

The input to Promex dictates which of the various heat transfer and pressure
drop routines the user wants to use in a particular run.

In this version, the geometry specific design programs that are included
are:

ornl4541 This folder is based on the geometry of the ORNL4541 Primary
Heat Exchanger.6 One of its purposes is to facilitate a reasonably close
comparison of Promex’s results with Primex’s for this heat exchanger.

twist0 This design concept assumes the same basic geometry of the ORNL4541
PHX but replaces the circular tubes and disk and donut baffles with
baffle-less, elliptical, twisted tubes.

All design folders contain at least three Perl files:

promex layout hx.pl Given a candidate HX, this subroutine must calcu-
late all the physical parameters of the HX such as number of tubes,
cross-section flow areas, etc that do not depend on HX length, for the
user’s specific HX geometry.

promex.pl This usually very simple main program implements the search
over the design space. It consists of nothing more than a set of loops
over whatever HX parameters the users wants to regard as variable,
repeatedly calling the various Common routines and the user’s costing
routine to evaluate each possible candidate.

If the tubeside fluid is steam, promex.pl is replaced by tromex.pl.
tromex.pl is used in exactly the same manner as promex.pl, but
the code will refer to the steam tables in calculating tubeside liquid
properties.

user cost model .pl The user must provide a costing routine. After deter-
mining that a candidate HX is feasible, this costing routine will be
used to evaluate the candidate.

Looking at this directory tree, the implications should be fairly obvious:
1. The user has the responsibility of choosing which material properties

routines, which heat transfer and pressure drop correlations, and which
stress and cost models will be used. If you do not find the material or
correlation or model you want or need, you are expected to provide it.
In doing so, you will have to follow the Promex AP which is described

6 Robertson, R, et al, Conceptual Design Study of a Singel-Fluid Moltes Salt Breeder
Reactor, ORNL-4541, June, 1971.

11

later in this manual. This is usually done by a copying an existing
routine and changing it as required.

2. Unless your heat exchanger geometry just happens to match one of
the geometries already implemented, the user is expected to provide
his own. That is, he will have to create a new design folder and write
the necessary code. In doing so, he can use one of the existing Design
folders as a template. Often the changes required are close to trivial.

12

6 Data Input Files

6.1 Introduction

To use Promex, you will need to prepare an input data file. Unless you are
testing new Promex code, CTX strongly recommends that you do NOT do
this from the Promex folder. Rather for each HX design study, set up a
totally separate folder and run Promex from that folder. This will require
the Promex design folders to be on your command path. Or you can set an
environment variable say PX to the design folder you want to run and issue
$PX/promex.pl with the proper command line variables. See next section.

6.2 Cylindrical Heat Exchangers

Figure 1 shows a typical input file for a cylindrical heat exchanger. Promex
input is in XML format, and the XML rules must be followed or you will
get an input parse error. The comments to the right of the colon, including
the colon, in Figure 1 are not part of the real file. The file would be illegal
XML if they were.

Each input variable is an attribute in the <user> element. Within this
element, order and white space have no meaning. The order and group-
ing shown in Figures 1 and Figure 2 is for convenience in explanation.
Promex will accept any order. Each variable is specified by a line of the form
name = "value" with the value always in quotes. And the attribute
name must match the corresponding variable name within the code.7

Most of the attribute names in Figure 1 are almost self-explanatory, and
the illegal text on the right should fill in the gaps. But a few additional
comments are in order. The three lines at the top set output labeling and
file names. They do not afffect the actual caclulations.

The next seven lines in this file select the heat transfer, pressure drop,
etc models which the user wants to use in this run. For example, the line

shell_ht_func = "ornl_2815"

instructs Promex to use the shell side heat transfer correlation which is
in the file called ornl_2815.pl in the SHELL_HT folder.

In searching for the cold end temperature in each increment Primex used
a temperature tolerance, hardwired at 3F. That is, if the trial temperature
and the calculated temperature were within 3F, then Primex accepted that

7 Internally, the input data is stored in a hash called $hx which is keyed by the attribute
name. To be more precise, the attribute name must match the hash key for each variable.

13

temperature. Promex uses percent of the power transferred in the increment
for this purpose. If the increment heat rate calculated from the enthalpy
change in the fluids differs from the heat rate calculated from the heat
transfer coefficients by less than this percent than Promex accepts the results
and moves on to the next increment. The use can control this tolerance by
setting tol_W_pct. The default is 0.1. At these levels, Promex’s tolerance is
much tighter than Primex. Typically, the temperature error is about 0.1C.

However, this accuracy is phony. Not only are the heat transfer cor-
relations rarely accurate to +/-10 percent; but also, like Primex, Promex
employs an extremely important short-cut. In computing the heat transfer
in any length increment, Promex uses the difference in the bulk fluid tem-
perature and the fluid temperature at the tube wall from the last increment.
The assumption is:

a These two temperature differences are of secondary importance in de-
termining the heat transfer coefficient.

b They are not going to change much from one increment to the next.
(a) is true for most heat transfer models but certainly not to the 0.1% level.
(b) is true only after second or third increment.

relax_factor sets the relaxation factor for the search, that is how ag-
gressively Promex changes the trial cold end temperature based on the cur-
rent error. 1.0, the default, is fairly quick, but could lead to convergence
errors. 0.5 will take about twice as long, but may converge in situations
where a more aggressive relaxation factor will not.

duty_W is the required heat rate. shell should be read as shell-side.
tubes should be read as tube-side. tube refers to an individual tube. To do
a Promex run, the user must specify not only the required duty (heat load),
but also the cold end temperatures, tubes_cold_C and shell_cold_C, and
the hot end temperatures tubes_hot_C and shell_hot_C. Fortunately, these
are the natural variables which arise in an overall molten salt plant design
study. As soon as we have a candidate reactor and primary salt, we know
the thermal power that the reactor is generating and we have a pretty good
idea of the hot end temperature we want from materials considerations, and
the low end temperature from melting point plus margin.8

8 The required heat rate plus the hot and cold end temperatures determine the mass
flow rates on both sides via the required enthalpy change in the fluids. In some cases, it
may be more natural to specify one temperature and the mass flow rate which will then
set the other temperature. Promex could easily be modified to work with input in this
form. But so far there appears to be no pressing need for this capability.

When heat exchangers are cascaded as is often the case in molten salt reactors, the
mass flows and the temperatures must match for both heat exchangers in the loop. If and

14

The variables which end with fluid or mat are material names which
must match the name used to reference the material properties functions for
that material in the MAT folder.. See MAT/promex_mat_functions.pl for a
list.

The next set of variables set the unit costs used in the optimization.
The final set of variable deal with the physical particulars of the HX.

Disk cut and donut cut are the fraction of the shell side cross-section area
which the baffle leaves open, that is, the ratio of the area of the window
outside/inside the baffle to the overall area.

All Promex input must be in strict, prefix-less SI. Linear dimensions
must be in meters, not millimeters, not kilometers. Energy in joules, not kJ
or MJ. Power in watts, not kW, or MW or GW. You can fake prefixes with
exponents. For example, in the line setting gap, we used 9.525e-3 instead
of 0.009525. 9.525e-3 meters can be read as 9.525 millimeters. the required
heat rate, duty W is set to 556.78e6 watts which can be easily read as 557
MW.

XML is self-identifying and allows flexible formatting. But far more

importantly, XML allows you to add new variables to Promex

without changing any code that does not depend on the new vari-

able.

For example, twisted tube HX’s have parameters such as tube_spiral_pitch
which are specific to this kind of HX. Often such parameters are required
only in the heat transfer and pressure drop correlations. If so, all a designer
who wants to add say tube_spiral_pitch to the list of input variables has
to do is add a line in his input file of the form

tube_spiral_pitch = "200e-3"

and the new variable will be passed to all the Promex code as $hx->{tube_spiral_pitch}.
“All” he has to do is write heat transfer and pressure drop correlations that
respond to this variable, and select these correlations in his input file. He

does not have to touch the rest of the code at all.9

6.3 U-tube Heat exchangers

In this version of Promex, a U-tube HX is simply a cylindrical heat ex-
changer. Promex does not know that the cylinder has been bent into a U.

only if the specific heat is a very weak function of temperature, this will be automatic and
you can work from one end of the cascade to the other.

9 This is a slight over-statement. Often such new variables affect the HX layout and
will also show up in promex layout hx.pl for the concept.

15

The specifics of the 180-degree bend are not modelled. The user has two
choices:

Ignore the bend Treat the bend as if it were not there. No bend heat
tranfer and no bend pressure drop. The result will be conservative for
heat transfer but not for pressure drop. In this case, Promex’s heat
exchanger length is really twice the length of the straight legs of the
U-tube. Adjustments for heat transfer and pressure drop in the bend
will have to be made off-line.

Treat the bend like the legs. If the bend heat transfer and pressure drops
are very similiar to that in the legs, then assume they are the same. In
this case, Promex’s heat exchanger length is really twice the average
length of the U-tubes. This assumption ignores the additional pressure
drop associated with the bend.

6.4 Segment-of-Ring Heat Exchangers

Figure 2 displays an input file for a ring segment, twisted tube HX. Only
the new variables are commented. Segment-of-ring heat exchangers are de-
scribed by the radius of the ring at the middle of the HX, $hx->{ring pr},
the tube bundle arc length on this radius, $hx->{bundle arcl} the bundle
width, and the bundle tube length. In this case, the user wanted to keep
the HX length/height as short as possible, so he set a very high penalty on
length.

The final set of variables in Figure 2 demonstrate an important Promex
feature. Variables whose name ends in array must contain a comma sep-
arated list. This list will be split into an array on input. The array’s name
will be the attribute name with the array removed. A common use of this
feature is to set a list of possible candidates to be searched over. For ex-
ample, the array called tube od maxes array is a list of tube outside major
axes which will be examined in the search over the design space. The ar-
ray name must be plural to avoid a name clash. If the list had been named
tube od max array, then the array name would have clashed with the scalar
tube od max. Single element arrays are allowed and common. One way of
debugging is to set all the search lists to a single number. But the plural
name rule for arrays must still be followed.

The final set of variables in Figure 2 tells Promex to examine all the
combinations of tube bundle widths, tube major axes, tube aspect ratios
(major axis/minor axis), and spiral pitch ratios (spiral pitch/tube major
axis) in the corresponding four lines.

16

As noted earlier and as Figures 1 and 2 make clear, using XML allows
Promex to accept a different set of input variables for different design con-
cepts. But this flexibility does means that the attribute name in an input file
is at least as important as the value. A mistake or typo in the left column
is a bigger mistake than a mistake in the right column. Hopefully, you will
get an “uninitialized variable” warning, but don’t count on it.

17

Figure 1: Sample Input for a Cylindrical, Baffled HX

<!-- close approximation of the ORNL 4541 PHX as described in ORNL TM-2815 -->

<promex_input>

<user

run_title = "emulates ORNL-TM-2815 wo bugs except optimizes at kg/kW=4" : displayed on output

hx_label = "ornl_2815_phx" : short label to be displayed on in ouput for this run

run_label = "ornl_4541" : base file name for the output for this run

tubes_pd_func = "ornl_2815" : tube side pressure drop model, must match name in TUBES_PD

tubes_ht_func = "ornl_2815" : tube side heat transfer model, must match name in TUBES_HT

tubes_heat_method = "constant_c_p" : tube side enthalpy change model, match name in COMMON

shell_pd_func = "ornl_2815" : shell side pressure drop model, must match name in SHELL_PD

shell_ht_func = "ornl_2815" : shell side heat trasnfer model, must match name in SHELL_HT

shell_heat_method = "constant_c_p" : shell side enthalpy change model, match name in COMMON

wall_ht_func = "circular" : tube wall heat transfer model, match name in WALL_HT

cost_model = "simplest" : HX cost model, must match name in COST

stress_model = "stub" : HX stress model, must match name in STRESS

tol_W_pct = "0.1" : increment allowable power error as a fraction

relax_factor = "1.0" : increment relaxation factor, 0.5 is safer, 1.0 is faster

wants_stress = "N" : Y if stress analysis required (NOT IMPLEMENTED)

duty_W = "556.78e6" : required thermal power, watts

tubes_fluid = "msbr_fuel" : tubeside fluid name, must match name in MAT

shell_fluid = "msbr_cool" : shell side fluid name, must match name in MAT

tubes_hot_end_Pa = "1.241e6" : tube side hot end pressure, pascals

shell_hot_end_Pa = "0.2344e6" : shell side hot end pressure, pascals

shell_hot_C = "621.11" : shell side hot end temperature, C

tubes_hot_C = "704.44" : tube side hot end temperature, C

shell_cold_C = "454.44" : shell side cold end, target temperature C

tubes_cold_C = "565.55" : tube side cold end, target temperature C

hx_mat_usd_p_kg = "50.0" : HX material cost, $/kg

pump_usd_p_kW = "200.0" : HX pump cost, $/kW

geometry = "cylinder" : currently either "cylinder" (Default) or "ring"

has_baffles = "Y" : Y if HX is baffled

tube_wall_mat = "alloy_n" : tube wall material name, must match name in MAT

hx_mat = "alloy_n" : rest of HX material name, must match name in MAT

ht_leak_factor = "0.80" : leak factor for heat transfer calcs, fraction

pd_leak_factor = "0.52" : leak factor for pressure drop calcs, frction

dncmr_or = "0.254" : Outside radius of central downcomer, m

gap = "9.525e-3" : Gap between tube bunker and shell/downcomer, m

hx_ir_max = "3.0" : Largest HX radius in search

has_grooves = "Y" : Y if tubes have helical indentations

tube_od = "9.525e-3" : tube outside diameter, m

tube_wall_thk = "0.890e-3" : tube wall thickness,m

tube_arrange = "R" : tube pitch arrangement R/T, radial/triangular

radial_pitch = "19.050e-3" : tube radial pitch, m

circum_pitch = "19.050e-3" : tube circumferential pitch, m

disk_cut = "0.400" : fraction open area in way of disk

donut_cut = "0.400" : fraction open area in way of donut

shell_thk = "31.25e-3" : HX shell thickness, m

ntube_sheets = "2" : number of tube sheets, 1 if U-tube

tube_sheet_thk = "121.0e-3" : tube sheet thickness, m

baffle_thk = "12.5e-3" : baffle thickness, m

/>

</promex_input>

18

Figure 2: Sample Input for a Ring Segment, Twisted Tube Heat Exchanger

<promex_input>

<user

run_title = "ring, twisted, nabe fuel shell, nabe tubes, kW/kg = 4, enormouse penalty on height"

hx_label = "twisted_top"

run_label = "top_nabe"

tubes_pd_func = "twisted_2001"

tubes_ht_func = "twisted_2011a"

tubes_heat_method = "constant_c_p"

shell_pd_func = "twisted_2001"

shell_ht_func = "twisted_2001"

shell_heat_method = "constant_c_p"

wall_ht_func = "circular"

cost_model = "simplest"

stress_model = "stub"

tol_W_pct = "0.1"

relax_factor = "1.0"

wants_stress = "N"

hx_len_max = "15.0" : infeasible if HX length exceeds this value

hx_len_del = "0.2" : length increment in search

duty_W = "556.78e6"

tubes_fluid = "nabe_cool"

shell_fluid = "nabe_fuel" : fuel salt on shell side

tubes_hot_end_Pa = "0.2344e6"

tubes_hot_C = "621.11"

tubes_cold_C = "454.44"

shell_hot_end_Pa = "1.241e6"

shell_hot_C = "704.44" : shell hot > tubes hot, so heat flow is reversed

shell_cold_C = "565.55"

hx_mat_usd_p_kg = "50.0"

pump_usd_p_kW = "200.0"

hx_len_usd_p_m = "1.0e7" : very large length penalty to find shortest feasible HX

geometry = "ring" : segment of ring

has_twisted = ’Y’ : twisted tubes

has_baffles = ’N’ : no baffles

tube_wall_mat = "alloy_n"

hx_mat = "alloy_n"

ring_pr = "1.860" : radius of ring at middle of HX

bundle_arcl = "3.251" : arc length of bundle at mid radius

gap = "9.525e-3"

tube_wall_thk_ratio = "0.1"

shell_thk = "31.25e-3"

ntube_sheets = "2"

tube_sheet_thk = "121.0e-3"

bundle_wids_array = "0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.060, 1.1, 1.2, 1.4, 1.6"

tube_od_maxes_array = "9.525e-3, 12.25e-3, 15.875e-3, 19.05e-3, 22.225e-3, 25.4e-3"

aspect_ratios_array = "3.333, 2.500, 2.000, 1.429, 1.111"

pitch_ratios_array = "5, 10, 20"

/>

</promex_input>

19

7 Running Promex

The standard way of running Promex is to issue the promex.pl command
in the Design folder for the concept you are working on. promex.pl does a
search over the design space and, if all goes well, comes up with the minimum
cost heat exchanger that meets the requirements of the user’s input file. For
example, currently the ornl4541 search is over a range of HX diameters and
baffle spacings. The twist0 search is over a range of HX diameters, tube
major axes, tube minor axes, and spiral pitch. For each such combination,
Promex starts at the hot end of the HX and keeps adding length increments
until it reaches the user specified cold end temperatures or finds that the
combination is infeasible.

The hard way to do a Promex design run is to issue
$PROMEX PATH/folder/promex.pl -uinputfile

where folder is the Design folder for the concept you are working on,
say ornl4541 and inputfile is the name of your data input file, for exam-
ples myrun 15.xml. You can shorten the typing considerably by assigning
$PROMEX PATH/folder to an environment variable, say MYPX and then issu-
ing

$MYPX/promex.pl -uinputfile

or you can put the command you want in little shell script with a short
name like run px and then issue

run px

CTX uses a scheme in which the Design folder of the project is copied
to a folder in the project’s directory tree, and this copy of the Design folder
code is then run from the project directory. This facilitates ad hoc changes
to the Design folder code but keeps the standard Promex folders off-limits.
This may or may not make sense depending on the rules of your shop.

By default, Promex simply displays its result to your terminal. Often
it is a good idea to pipe the Promex command to tee xxxxxxx which will
both display the results on your terminal and save them in xxxxxxx .

In addition to the -u user file argument, Promex takes the following
command line options

-k Promex creates a log file for every run. By default, it will automatically
delete this file at the end of the run, unless there are problems. If
you include -k on the command line, the log file will not be deleted.
This can be useful both in debugging and in seeing how the parameter
search can be speeded up.

-dn This sets the debug level to n . n must be an integer between 0 and 9.

20

The higher the n , the more output you will get. The default is zero,
no debugging output.

-b This options replicates the Primex bugs. Currently, only the ornl4541

Design folder and the heat transfer and pressure drop correlations
lifted from ORNL-TM-2815 respond to this option. It will probably
go away in future releases.

-x This option will result in the summary output being written to an
XML file. This is an ideal format for downstream processing. Or
you can place the promex.pl command within a script that has a
larger design horizon. That script can extract whatever it needs from
each Promex run from the run’s XML output file, which file will be
called out run label.xml, where run label is a string specified in
the user’s input file. See Figure 1.

-L By default, Promex displays its output on the screen as a simple pipe-
delimited table. Ideally, we would like to have the capability of output
in a variety of markup languages. Currently, the only such markup lan-
guage, other than XML, is Latex. If you set the [-L] option, Promex
will output the results as two Latex tables, which can be easily incorpo-
rated in Latex formatted reports and papers. The two files will called
tbl promex run label .tex and tbl promex run label steps.tex.
The first file contains a summary; the second file shows the result
length increment by length increment.

21

8 Output

Tables 1 and 2 show typical Promex output. Table 1 shows the overall stuff.
Table 2 show the step-wise results, length increment by length increment.
This HX is baffled so the length increment is the baffle spacing.

Table 1: Summary results for the ornl4541 test case

Promex version/variant: 0.08/ornl4541

ornl_2815_phx Input file=ornl2815.xml

Tube-side pressure drop correlation: ornl_2815

Tube-side heat transfer correlation: ornl_2815

Shellside pressure drop correlation: ornl_2815

Shellside heat transfer correlation: ornl_2815

Tube wall heat transfer correlation: circular

Cost model: simplest Stress model: stub

Tube_side heat method: constant_c_p Shellside heat method: constant_c_p

Heat load required(MW) 556.8

Tube side inlet pressure(MPa) 1.241 Shell outlet pressure (MPa) 0.234

High temp tube side C 704.4 High temp shell side(C) 621.1

Low temp tube side C 565.5 Low temp shell side C 454.4

Heat transfer leakage factor 0.800 Pressure leakage factor 0.520

Tube wall material alloy_n HX material alloy_n

Tubeside fluid msbr_fuel Shellside fluid msbr_cool

HX material cost (USD/kg) 50.00 Pump cost (USD/kW) 200.00

Central downcomer OD (mm) 254.00 Shell to tube gap (mm) 9.525

Max allowed HX radius(m) 3.000

Use enhanced tubes Y Use stress analysis N

Tube Outside diameter(mm) 9.525 Tube wall thickness(mm) 0.89000

Radial pitch(mm) 19.050 Circumferential pitch(mm) 19.050

Shell thickness(mm) 31.250 Tube sheet thickness(mm) 121.000

Inner baffle cut (fraction) 0.400 Outer baffle cut (fraction) 0.400

Number of tube sheets 2 Baffle thickness(mm) 12.500

Total heat transferred(MW) 546.7 Percent of target 98.20

Tube-side mass flow rate(kg/s) 2955.2 Shellside mass flow rate(kg/s) 2216.7

Tubes-side pressure drop(MPa) 1.23848 Shellside pressure drop(MPa) 0.61892

Exchanger internal diameter(m) 1.6510 Exchanger length(m) 7.32

Number of baffles 22 Baffle spacing(m) 0.3329

Fluid volume in tubes(m3) 1.838 Heat transfer area(m2) 1167.22

Total number of tubes 5326 Total tube_length(m) 7.324

Tube wall average temp(C) 594.92

Tube-side average temp(C) 636.61 Shellside average temp(C) 539.71

Exchanger weight(kg) 28009 Exchanger material cost(USD) 1586095

Tube-side pump kW (HX only) 1100.2 Shellside pump kW (HX only) 734.4

Pump cost (HX only) (USD) 366904

Total cost(USD) 1952999

If the “optimum” HX according to Promex ends up on a biundary of the
search space, then there is a very good chance that a better optimium lies
outside the search space, and the designer needs to consider expanding the
search space.

22

Table 3 shows a portion of the XML output file for the same input. This
file was created by issuing

$PROMEX_PATH/ornl4541/promex.pl -uornl2815.xml -x

The XML output is ugly, but computers are not into aethetics. If you
are using Promex inside a broader analysis simply slurp the XML into your
code with whatever XML parser you have available and pick out the out-
put variables you need. For example, a plant design progrm may only be
interested in the heat exchanger’s length, diameter, weight, and pressure
drops. If you are using Perl, after slurping, these would show up in the
$promex_output->{hx_len} etc variables.

23

Table 2: Step-wise results for the ornl4541 test case

I |shell_C|tube_od|tube_id|tubes_C| shell |shell pd| tubes |tubes pd|tubes |shell |total | Heat | shell | tubes |

| | C | C | | Re | Pa | Re | Pa |W/m2-K|W/m2-K|W/m2-K| MW | m/s | m/s |

0| 621.1| 0.0| 0.0| 704.4| 0| 0| 0| 0| 0| 0| 0| 0.000| 0.0000| 0.0000|

1| 613.9| 658.2| 680.2| 698.4| 30603| 28981| 12582| 54440| 21135| 11420| 5436| 24.207| 1.9230| 3.5869|

2| 606.5| 651.0| 673.1| 692.3| 29974| 28899| 12255| 54747| 20590| 11529| 5424| 24.501| 1.9175| 3.5825|

3| 599.3| 643.2| 665.0| 686.3| 29349| 28817| 11933| 55060| 18611| 11465| 5262| 24.111| 1.9120| 3.5781|

4| 592.0| 636.5| 658.5| 680.2| 28730| 28735| 11618| 55380| 18314| 11398| 5224| 24.272| 1.9066| 3.5737|

5| 584.7| 629.7| 651.8| 674.1| 28110| 28654| 11304| 55709| 18031| 11335| 5188| 24.437| 1.9013| 3.5693|

6| 577.4| 622.9| 645.2| 668.0| 27489| 28573| 10993| 56048| 17745| 11270| 5150| 24.595| 1.8959| 3.5649|

7| 570.0| 616.0| 638.4| 661.8| 26867| 28492| 10685| 56398| 17454| 11205| 5112| 24.745| 1.8905| 3.5605|

8| 562.5| 609.1| 631.6| 655.6| 26245| 28410| 10380| 56758| 17159| 11138| 5073| 24.888| 1.8851| 3.5560|

9| 555.0| 602.2| 624.8| 649.4| 25624| 28329| 10078| 57129| 16860| 11070| 5032| 25.022| 1.8797| 3.5516|

10| 547.5| 595.1| 617.8| 643.1| 25003| 28248| 9780| 57158| 16465| 11001| 4982| 25.104| 1.8743| 3.5471|

11| 540.0| 587.9| 610.7| 636.8| 24385| 28167| 9485| 57065| 16024| 10930| 4927| 25.153| 1.8689| 3.5426|

12| 532.4| 580.8| 603.5| 630.5| 23770| 28086| 9196| 56976| 15584| 10859| 4870| 25.187| 1.8635| 3.5382|

13| 524.9| 573.5| 596.3| 624.3| 23159| 28006| 8911| 56889| 15146| 10786| 4812| 25.209| 1.8582| 3.5337|

14| 517.3| 566.3| 589.1| 618.0| 22552| 27926| 8630| 56807| 14711| 10713| 4753| 25.215| 1.8529| 3.5293|

15| 509.8| 559.1| 581.9| 611.7| 21950| 27846| 8355| 56727| 14278| 10638| 4692| 25.207| 1.8477| 3.5248|

16| 502.3| 551.8| 574.6| 605.4| 21353| 27767| 8085| 56652| 13848| 10563| 4631| 25.184| 1.8424| 3.5204|

17| 494.7| 544.5| 567.3| 599.1| 20762| 27689| 7821| 56580| 13421| 10486| 4567| 25.145| 1.8372| 3.5160|

18| 487.2| 537.2| 559.9| 592.9| 20177| 27611| 7562| 56512| 12998| 10409| 4503| 25.090| 1.8321| 3.5116|

19| 479.7| 529.9| 552.5| 586.6| 19599| 27534| 7308| 56448| 12579| 10331| 4437| 25.018| 1.8269| 3.5073|

20| 472.3| 522.6| 545.2| 580.4| 19028| 27458| 7060| 56388| 12163| 10253| 4370| 24.929| 1.8219| 3.5029|

21| 464.8| 515.3| 537.8| 574.2| 18465| 27382| 6819| 56333| 11752| 10173| 4302| 24.822| 1.8168| 3.4986|

22| 457.4| 508.0| 530.4| 568.1| 17911| 27307| 6583| 56282| 11346| 10093| 4232| 24.697| 1.8119| 3.4943|

target_shell_cold_C= 454.4 target_tubes_cold_C= 565.5

24

Table 3: Portion of the XML output for the ornl4541 test case

<promex_output baf_ctc="0.33289875"

baffle_thk="12.5e-3"

baffs_kg="2824.40737169093"

baffs_usd="141220.368584547"

cflow_circum_i="1.75844394965195"

cflow_circum_o="2.06164235016081"

circum_pitch="19.050e-3"

cost_model="simplest"

disk_cut="0.400"

disk_or="0.65405"

dncmr_or="0.254"

donut_cut="0.400"

donut_ir="0.5588"

duty_W="556.78e6"

g_i="3661.8057802264"

g_m="3486.24252405528"

g_o="3342.62742078302"

....

tube_wall_thk="0.890e-3"

tubes_ave_C="636.648330052825"

tubes_cold_C="565.55"

tubes_farea="0.25091919621178"

tubes_fluid="msbr_fuel"

tubes_heat_method="constant_c_p"

tubes_hot="1"

tubes_hot_C="704.44"

tubes_hot_end_Pa="1.241e6"

tubes_ht_func="ornl_2815"

tubes_kg="8406.78888356391"

tubes_kg_p_s="2955.24064115633"

tubes_pd_func="ornl_2815"

tubes_pump_W="1100177.18292426"

tubes_pump_usd="220035.436584853"

tubes_total_Pa="1238484.54175607"

tubes_usd="420339.444178195"

user_file="ornl2815.xml"

wall_ave_C="594.437195683434"

wall_ht_func="circular"

wants_stress="N">

</promex_output>

\normalsize

25

9 Hacking Promex

Promex is intended to be hacked. The command line options, -k amd -d can
be a big help in this process. In addition, almost all the Promex subroutine
files include test code. To run these tests, go to the routine’s folder and
issue xxxxxxxx.pl where xxxxxxxx.pl is the subroutine’s file name. For
example, the test code for the material properties files, produces a table of
material proerties for the file’s material. In some cases, a separate test has
not been implemented in which case you should get a message, telling you
how to test the file’s code. Your own code should include such tests.

Other than that you need only follow the programming interfaces de-
scribed in the remainder of this manual.

26

10 The Materials Folder, MAT

The remainder of the manual documents the programming interfaces be-
tween the various library and utility routines.

We will start with the material properties functions in the MAT sub-
folder. For each heat exchanger fluid, Promex requires density, conductivity,
viscosity, and specfic heat as a function of temperature and pressure. If you
need a fluid that is not already in the library, or are unhappy with the
routines for a fluid that are already there, you must do two things:

1. Add a file containing four subroutines for your fluid. each of these
subroutines must take two arguments:
(a) The fluid temperature in Kelvin.
(b) The fluid absolute pressure in Pascals.
Your subroutines may ignore either or both of these arguments but
the arguments must be there. The subroutines should be named:
(a) promex k t xxxxxx which returns conductivity in W/m2-K
(b) promex c p xxxxxx which returns specific heat in J/kg-K
(c) promex rho xxxxxx which returns density in kg/m3
(d) promex mu xxxxxx which returns viscosity in Pa-s.
xxxxxx is any name you want as long as it is not already in the
library. Each subroutine must return the indicated property at the
given temperature and pressure. Once again everything must be in
strict, prefix-less SI.
The easiest way to prepare such a file is to copy over an existing fluid
properties file and make the necessary changes. Make sure you change
ALL the old function names. Your fluid property may depend on
temperature and pressure in any way you like, but table look ups can
slow Promex down a lot. Usually fitting a curve to your property data
is the better way to go.
It is very bad form to wipe out routines that are already in the library.
Even if you are “replacing” routines for an existing material with better
ones, you should use a new material ID, eg flibe ucb rather than over-
writing the old flibe routines.

2. Register your four routines in promex mat funcs.pl. This file contains
a two dimensional table of subroutine names. You will need to add
four lines to this table of the form

$mat_funcs->{yyyyyy}{c_p} = ’promex_c_p_xxxxxx’;

$mat_funcs->{yyyyyy}{k_t} = ’promex_k_t_xxxxxx’;

$mat_funcs->{yyyyyy}{rho} = ’promex_rho_xxxxxx’;

$mat_funcs->{yyyyyy}{mu} = ’promex_mu_xxxxxx’;

27

Usually, but not necessarily, yyyyyy and xxxxxx are the same.
All Promex input files have two lines of the form
shell_fluid = "aaaaaa"

tubes_fluid = "bbbbbb"

Whenever the user sets aaaaaa or bbbbbb to yyyyyy , she will end up
using your new material properties functions. Solid material proper-
ties work in exactly the same way, but currently Promex only needs
conductivity and density.

Promex often searches widely if sometimes blindly over the design space.
If a candidate HX is infeasible, temperatures may not converge. You must
assume your routines will be called with out of range input in which case your
routines must place an error message in PROMEX LOGFILE and return a nega-
tive number. It is the caller’s responsibility to open and close PROMEX LOGFILE.
In particular for fluids, your routine should check that the material temper-
ature is between the melting point and the boiling point. Currently, we have
adopted the short-cut that only the viscosity routine does this test, blithely
assuming that if any of the material routines are called, the viscosity routine
will be called, and the out-of-range temperature caught.

Any new materials file should include test code. This test code
should be triggered by issuing the file name from the MAT folder. Typically,
this test code produces a materials property table which can be compared
with your data and other sources. See one of the existing materials files for
how this is done.

28

11 The Steam Folder, STEAM

Steam is treated differently from other heat transfer fluids since it is both
compressible and the specific heat changes drastically with temperature and
pressure.

Promex implements a version of the IAPWS-IF97 steam tables in Perl.
This implementation is filed in the STEAM folder. Any Perl program can
use this module via require $ENV{PROMEX PATH}/STEAM/SteamTable.pl.
Region 5 (temperature ¿ 800C) is not implemented. In Region 3, only sub-
regions 3a, 3b, 3c, 3d, 3e, and 3f are implemented. This leaves out a few
tiny areas near the critical point. The non-implemented regions are rarely
encountered in steam generator design, but if this happens an error message
is raised.

The following four fluid properties routines are implemented.
1. steam hv which returns steam enthalpy and specific volume for a given

pressure in Pa and a given temperature in K.
2. steam rho c p which returns steam density (kg/m3) and specific heat

for a given pressure in Pa and a given temperature in K.
3. steam mu which returns steam viscosity (Pa-s) for a given temperature

(K) and density in kg/m3. If you don’t know the density, you should
call steam hv first and then invert the specific volume.

4. steam lambda which returns steam thermal conductivity for a given
temperature (K) and density in kg/m3. If you don’t know the density,
you should call steam hv first and then invert the specific volume.

Each of these routines is in its own file whose name is the name of the
subroutine with a .pl extension. In the folder, test code for each of these
routines is provided. This code can be executed by issuing the file name
from the folder.

29

12 The Heat Transfer Folders, SHELL HT and

TUBES HT

The shell side heat transfer functions are filed in the SHELL HT folder; the
tube-side in TUBES HT. These functions compute the average heat trasnfer
rate in a given length increment.

To add a new shellside heat transfer function, simply put the code in
SHELL HT giving it a unique name within the folder. To use this function,
the user must set the attribute shell ht func to this name (without the
.pl) in the user input file.

The arguments to this routine must be in order
1. a reference to the $hx hash
2. the length of this increment (m)
3. the average shellside fluid temperature in this increment (K)
4. the average shellside pressure in this increment (Pa)
5. the average shellside tube wall temperature in this increment (K)
6. debug level.
Promex puts all the heat exchanger parameters, both user input and in-

ternally calculated values in a big hash referenced by $hx. For example, the
tube OD is in \$hx->{tube_od}. Thus your routine has access to any vari-
able in this hash. You can inspect this hash by placing promex_print_hx($hx)
at the top of your code. $hx contains not only all the heat exchanger physical
parameters but all the user input including material choices.

Debug level is an integer between 0 and 9. The higher the debug level, the
more debugging information the caller wants. Debugging messages should
be written to STDERR. You can respond to this parameter anyway you
want except zero means no debugging messages.

Your function is bound to be called with crazy input. You must check
the value returned from each material property function, and return immedi-
ately with (-1, 0, 0, 0, 0, 0, 0, 0) if it is non-positive. The material
property function will have placed an error message in PROMEX LOGFILE. If
the error occurs in your routine, — for example, an out-of-range Reynolds
number — you must write an error message to PROMEX LOGFILE and then
return with (-1, 0, 0, 0, 0, 0, 0, 0). It is the caller’s responsibility
to open and close PROMEX LOGFILE.

If there are no errors, your routine must return in order:
1. the average heat transfer rate, W/m2-K, in the increment
2. the specific heat used, J/kg-K
3. the Nusselt number,

30

4. a characteristic Reynolds number,
5. the Prandtl number used,
6. the corresponding fluid velocity (m/s),
7. the average viscosity (Pa-s),
8. the average density (kg/m3).10

Your file should include test code which is triggered when the user issues
the filename from this folder. See one of the existing routines for how this
is done.

The situation is exactly the same for tube-side heat transfer fucntions ex-
cept the code goes in the TUBES HT. File and function names need be unique
only within their respective folders. A shell side heat transfer function can
have the same name as a tube side. This is typically the case when both
come from the same source.

10 If your routine does not compute one of these values — other than the heat transfer
rate — return a -1 in the corresponding slot.

31

13 The Pressure Drop Folders, SHELL PD and

TUBES PD

The shell side pressure drop functions are filed in the SHELL PD folder; the
tube-side in TUBES PD. These functions compute the pressure drop in a given
length increment.

To add a new shellside pressure drop function, simply put the code in
SHELL PD giving it a unique name within the folder. To use this function,
the user must set the attribute shell pd func to this name (without the
.pl) in the user input file.

The arguments to this routine are exactly the same as for the heat
trasnfer functions. See Section 12.

Your function is bound to be called with crazy input. You must check
the value returned from each material property function, and return imme-
diately with (-1, 0, 0, 0, 0) if it is non-positive. The material property
function will have placed an error message in PROMEX LOGFILE. If the error
occurs in your routine, — for example, an out-of-range Reynolds number
— you must write an error message to PROMEX LOGFILE and then return
with (-1, 0, 0, 0, 0). It is the caller’s responsibility to open and close
PROMEX LOGFILE.

If there are no errors, your routine must return in order:
1. the pressure drop inthe increment, Pa
2. a characteristic Reynolds number,
3. the corresponding fluid velocity (m/s),
4. the average viscosity (Pa-s),
5. the average density (kg/m3).11

Your file should include test code which is triggered when the user issues
the filename from this folder. See one of the existing routines for how this
is done.

The situation is exactly the same for tube-side pressure drop fucntions
except the code goes in the TUBES PD. File and function names need be
unique only within their respective folders. A shell side pressure drop func-
tion can have the same name as a tube side.

11 If your routine does not compute one of these values — other than the pressure drop
— return a -1 in the corresponding slot.

32

14 The STRESS Folder

Currently, no stress analysis is implemented, but thanks to the flexibility
of Perl hashes we do have an outline of an API. The stress routine will be
called only after the candidate HX has proven itself feasible from a heat
transfer point of view and pressure drop point of view. The stress routine
will be called with

$hx This hash contains all the HX parameters which have been calculated
up to this point.

$steps This array of hashes contains all the step-wise results for the HX
including the temperatures and pressures in each increment.

$debug level

Thus the stress and strength routine will have access to everything that it
needs to compute the stresses. The routine will be free to vary shell and
tube sheet thickness but not tube wall thickness.

If the stress analysis is successful, the routine should add the results to
$hx and $steps and return a ’Y’. Otherwise it will need to write a message
to PROMEX LOGFILE explaining why the candidate HX was infeasible and
return a non-Y.

To implement stress analysis, we will need to expand the material prop-
erties library to include allowable stress as a function of temperature. These
routines will use the same API as the existing material properties functions.

33

15 The COMMON Folder

The COMMON is the most important Promex folder. It is the core of Promex.
You probably should not mess with the code in this folder unless you are
a maintainer. This folder contains the following routines in files with the
same name as the routine with a .pl appended.

promex setup This routine should be called just after the user input is
read in. It sets all the various functions to the user’s choices and
computes the mass flow in kg/s on both sides using the user specified
shell heat method and tubes heat method. Currently the only heat
method that is implemented is constant c p which bases the mass
flow on the material specific heat at the average between the hot end
and cold end temperatures. constant c p is also filed in this folder.

promex length Starting at the hot end of the HX, this routine keeps adding
length increments until it reaches the user’s specified cold end temper-
ature or an error occurs. It also compute the pressure drops in each
increment. If successful, it adds all its results, most importantly the
HX length, to $hx and $steps and returns Y indicating that this can-
didate HX is feasible as far as heat transfer is concerned. Otherwise
it returns N.

promex find temp This is the heart of the beast. Given the hot end tem-
peratures in any increment it computes the cold end temperatures in
that increment by trial and error. If successful it adds the results for
this increment to $steps, and returns 1 plus some numbers which are
used to initiate the calculation for the next increment. If unsuccessful,
it returns a negative number. The temperature convergence logic is
lifted from Primex.

All the real work is done by promex length and promex find temp.
The user’s main program need only set the problem up, call promex length

for each candidate HX that it wants examined, cost the results if the
candidate is feasible, and pick out the most interesting candidates.

For steam generators, promex length and promex find temp. are
replaced by tromex total pd, tromex length and tromex find Pa.
Since the steam enthalpy change depends on the steam pressure at
the HX outlet, tromex total pd introduces another loop into the al-
gorithm which guesses the outlet pressure, which allows the rest of
the calcualtions to proceed, and then compares the resulting outlet

34

pressure with the guess and the adjusts the guess until the numbers
converge.

promex pd check This little routine checks the tubeside and shell side pres-
sure drops against the user-supplied attribute tubes max Pa and shell max Pa.
If you do not want to impose pressure drop constraints, simply don’t
include these attributes in your input file.

promex save hx This routine is called with $hx and $steps. It does a
deep copy of these two data structures, and returns references to these
copies. This is an easy way to save a particular HX and its perfor-
mance. One obvious use is the save the minimum cost HX found so
far. The current implementation of promex save hx requires the Perl
Storable module which is distributed with most recent Perl distribu-
tions. If Storable is not installed at your site, you can download it
from CPAN.

35

16 The IN OUT Folder

The IN OUT contain non-design specific input and output routines. This
folder contains the following routines in files with the same name as the
routine with a .pl appended.

promex input This routine reads in the user’s input file. Currently, it uses
the Perl XML::Simple function XMLin which does all the dirty work
of parsing the XML and putting the variables into the $hx hash keyed
by the attribute name. promex input also splits the array strings into
arrays. And it adds some meta-data such as the current PROMEX PATH

and date and time to the $hx hash. The file includes some test code
which can be executed via issuing promex input.pl for the IN OUT

folder. See the code for the options.

promex print hx This routine is called with a reference to a hash. It prints
out all the scalars in that hash in semi-readable form. It can be used
for inspecting a $hx at any point. Remember just after the user’s
input file is read in, $hx will contain only the user’s input but as the
calculation proceed lots of stuff gets added. Also $hx is really the
hash representing the current candidate HX under analysis and keeps
changing. If you want to save a particular HX for whatever reason,
you need a line like

($my_hx, $my_steps) = promex_save_hx($hx, $steps, $debug_level);

and then you can use promex_print_hx($my_hx); to see what you
saved.

promex hx2xml This routine is called with a reference to a hash. It turns
that hash back into XML and prints the results to out xxxxxx.xml

where xxxxxx is the value of the run label attribute in the user’s
input file. Output in this form is difficult to read, but it is ideal for
post-processing by other programs. A program that needs the results
of a Promex run, need only slurp in the contents of out xxxxxx.xml

using for example XMLin (see the code in promex input.pl), and pick
out the numbers it needs from the resulting hash.

promex output Right now readable Promex output is bit of a mess. The
problem is that a non-design specific output routine cant know what
variables the program is using nor which of these are important enough

36

to include in the output. promex ouput is a compromise that tries to
print out the most important variables for baffled and twisted tube
HX. This area needs a lot of work. One possibility is to change the
user input file so it tells Promex which variables to show on the output.

You will see some Latex generators in this folder. You can ignore them
for now.

37

17 The Design Folders

All design folders must contain at least three Perl files:

promex layout hx.pl Given a candidate HX, the promex layout hx sub-
routine in this file must calculate all the physical parameters of the HX
such as number of tubes, cross-section flow areas, etc that do not de-
pend on HX length, for the user’s specific HX geometry. This routine
should be called as soon as all the HX parameters other than length
are fixed. Normally this will be at the top of the innermost loop in the
main program. The program takes $hx and $debug level and adds
the result of its calculations to the $hx hash. Best way to see how this
works is study the code in ornl4541 or twist0.

promex.pl The Promex main program, promex in promex.pl is quite sim-
ple. It consists of nothing more than a set of loops over whatever
HX parameters the users wants to regard as variable, repeatedly call-
ing the various Common routines to evaluate each possible candidate.
Moreover all Promex main programs do nearly the same thing. In
most cases, you can create the main program you need by copying
over an existing main program and then modifying the loops slightly
to fit your needs. Best way to see how this works is study the code in
ornl4541 or twist0.

If the tubeside fluid is steam, promex.pl is replaced by tromex.pl.
tromex.pl is used in exactly the same manner as promex.pl, but
the code will refer to the steam tables in calculating tubeside liquid
properties.

user cost model.pl The user selects the costing model she wants by the
cost model attribute in her input file. There must be a file in the
design folder whose name is the same as the value of this attribute
with a .pl appended and that file must contain a costing routine with
this name. This arrangement allows the user to change the cost model
without changing anything else, simply by changing the cost model

attribute.

The costing routine should be called only after the candidate HX has
passed all the feasibility tests. The cost routine is called with $hx and
if needed $steps and the ubiquitous $debug level. The cost routine
should add at least the following variables to the $hx hash.

38

$hx->{total usd} The estimated cost of the heat exchanger in dol-
lars.

$hx->{hx kg} The total mass of the heat exchanger in kilograms.

$hx->{tubes pump W} The tube-side pump power required in watts.
This should be the net pump power required to handle only the
pressure drop in the tubes. Do not apply any pump efficiencies
or worry about pressure drops elsewhere in the loop.

$hx->{tubes pump W} The tube-side pump power required in watts.
This should be the net pump power required to handle only the
pressure drop on the shell side. Do not apply any pump efficien-
cies or worry about pressure drops elsewhere in the loop.

Other output such as a more detailed breakdown of the weight or cost
can also be added to the $hx hash.

Utility routines are provided to aid in these calculations. See the code.

The cost routine must return $hx->{total_usd}.

39

